Radiometric age dating worksheet

Despite seeming like a relatively stable place, the Earth's surface has changed dramatically over the past 4.6 billion years.Mountains have been built and eroded, continents and oceans have moved great distances, and the Earth has fluctuated from being extremely cold and almost completely covered with ice to being very warm and ice-free.Students should be able to understand the principles and have that as a background so that age determinations by paleontologists and geologists don't seem like black magic. Geologists in the late 18th and early 19th century studied rock layers and the fossils in them to determine relative age.William Smith was one of the most important scientists from this time who helped to develop knowledge of the succession of different fossils by studying their distribution through the sequence of sedimentary rocks in southern England.Radiocarbon dating can be used on samples of bone, cloth, wood and plant fibers.The half-life of a radioactive isotope describes the amount of time that it takes half of the isotope in a sample to decay.Carbon is naturally in all living organisms and is replenished in the tissues by eating other organisms or by breathing air that contains carbon.At any particular time all living organisms have approximately the same ratio of carbon 12 to carbon 14 in their tissues.

There are well-known methods of finding the ages of some natural objects.In the case of radiocarbon dating, the half-life of carbon 14 is 5,730 years.This half life is a relatively small number, which means that carbon 14 dating is not particularly helpful for very recent deaths and deaths more than 50,000 years ago.When an organism dies it ceases to replenish carbon in its tissues and the decay of carbon 14 to nitrogen 14 changes the ratio of carbon 12 to carbon 14.Experts can compare the ratio of carbon 12 to carbon 14 in dead material to the ratio when the organism was alive to estimate the date of its death.